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Complete integrability for a discrete Heisenberg chain 
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Department of Physics and Research Center of Crete, University of Crete, Heraklion, 
Greece 

Received 24 November 1986 

Abstract. Haldane conjectured that a simple generalisation of the Heisenberg spin chain 
leads to a completely integrable classical system without invoking the usual continuum 
approximation. Complete integrability is established in the present paper for the generalised 
discrete chain by exhibiting a Lax pair and an infinite set of non-local conservation laws. 
The associated inverse scattering problem is also formulated providing explicit soliton 
solutions. 

1. Introduction 

It is widely believed that the Heisenberg spin chain defined by the usual exchange 
Hamiltonian H = *Z(S,, S, , , )  is not a completely integrable quantum system except 
for the special spin value s = i. Consequently the associated classical system described 
by the equation of motion 

S, = J,, - J n - ,  J n  = Sn X Sn+l s’, = 1 (1.1) 

is thought not to be completely integrable because the classical model is perceived as 
a large-s approximation of the quantum theory. The dot in (1.1) stands for time 
differentiation and both the exchange constant and the actual spin value have been 
scaled out. 

Haldane suggested [ 11 that the classical system (1.1) becomes completely integrable 
if it is modified according to 

The motivation for this choice was provided by the earlier discovery [2-41 of a class 
of quantum spin Hamiltonians that remain completely integrable for arbitrary spin s 
if suitable higher-order polynomials in (S,, are added to the original Heisenberg 
Hamiltonian. Haldane’s observation was that the required polynomials in the ferromag- 
netic case, whose order increases with increasing s, may be summed in the large-s limit 
to produce the non-polynomial interaction of (1.2). It is then reasonable to expect 
that the resulting classical system is completely integrable. 

To be sure higher-order polynomials arise in real spin systems with s f f ,  but not 
in the precise combinations needed for complete integrability [5,6]. It is therefore 
doubtful that the integrable extensions of the Heisenberg model will be of direct 
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practical significance. Nevertheless the study of such extensions is of some methodo- 
logical importance because non-integrable systems of actual interest are often better 
understood as deviations from specific completely integrable limits. Furthermore the 
semiclassical quantisation of non-linear spin waves has been based so far on the 
continuum approximation of (1.1) and its relevance for the corresponding lattice system 
is still under debate [7 ,8] .  An explicit solution of the non-linear lattice system defined 
by (1.2) would clearly help elucidate some of the issues involved in this problem. 

It is the purpose of the present paper to establish the complete integrability of 
Haldane's extension of the classical model without invoking the continuum approxima- 
tion. In  fact the continuum limit of the present model is identical to the continuum 
limit of the original Heisenberg chain, a coincidence that underscores the danger of 
over-interpretation of semiclassical results based on the continuum approximation. 
We will find that the system defined by (1.2) is the most natural lattice counterpart of 
the usual continuum model. Hence we first review some important features of the 
latter, in § 2, in preparation of our main result concerning (1.2) which consists of a 
Lax pair and  an infinite set of non-local conservation laws. The associated inverse 
scattering problem is formulated in §§ 3 and  4 while explicit soliton solutions are 
constructed in § 5 .  

2. Dual symmetry 

Suppressing the lattice constant, the continuum limit is achieved by setting S,, + S ( x ) ,  
J,, + S x S, and J,, -J, ,- ,  + J, in (1.1) where the subscript denotes differentiation with 
respect to the space variable x. It will be convenient to introduce matrix notation 
according to S = S"u, where the ua are the familiar Pauli matrices. The constraint 
S', = 1 becomes S' = I ,  where I is the 2 x 2 unit matrix, and J = J a g a  may be written 
as J = (1/2i)[S, S,]. Hence the continuum model is described by the equation of motion 

S = J ,  J = -ti[ S, S,] s2= I (2.1) 
which is written in the form of a continuity equation to indicate that the magnetisation 
M = d x  S is conserved. An interesting property of the densities S and J is that they 
satisfy the pure gauge condition 

(2.2) 
which is an identity that follows directly from the constraint S 2 =  I. In  a relativistic 
context the continuity equation (2.1) and the pure gauge condition (2.2) assume more 
symmetrical forms, namely P J ,  = 0 and a,J, - a,J, + [J,, J,] = 0 with p, v = 0, 1, and  
are known to lie in the heart of the complete integrability of large classes of non-linear 
field theories [9, lo]. A first important consequence of the preceding remarks is that 
(2.1) and (2.2) guarantee the existence of a Lax pair in which the Lax matrices are 
linear superpositions of S and J. Simple experimentation shows that the Lax pair is 
given by 

S, -i i[s,  53 = o 

R, = A R  R = B R  

A = i h S  B = iA(J+2AS) (2.3) 
where the compatibility condition A - B, + [ A ,  B ]  = 0 is satisfied for an  arbitrary 
eigenvalue A by virtue of (2.1) and (2.2). An equivalent form of the Lax pair (2.3) 
was employed by Takhtajan to formulate an  inverse problem for the continuum model 
[111. 
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Experience with relativistic field theories further suggests that the Lax pair (2.3) 
provides a local symmetry which is often referred to as a dual symmetry. The dual 
symmetry was discussed briefly in the present context in [12]. Given a solution 
S = S(x, t )  of (2.1) the Lax pair (2.3) yields a linear system of compatible equations 
which can be solved for the 2 x 2 matrix R = R(x, r ;  A ) .  The latter can be normalised 
so that it becomes an element of SU(2)  and defines a rotation that depends on the 
specific solution S = S(x, t )  and the eigenvalue A. Now consider a new spin density 
S ' =  S'(x, t ;  A )  constructed as 

S '= (R 'SR) (x -u t ,  t )  U = 4A. (2.4) 
A surprisingly straightforward calculation establishes that the spin density S' also 
satisfies the original equation of motion (2.1) for an arbitrary eigenvalue A. It is evident 
that the local symmetry transformation (2.4) may be interpreted as a non-linear 
implementation of a Galilean boost. Note that the magnetic continuum does not seem 
to admit linear Galilean boosts unlike the non-linear Schrodinger equation and related 
theories. Although Galilean boosts should be distinguished from ordinary space 
translations, the preceding rotationally invariant construction must have some bearing 
on a recent re-examination of the momentum integral [SI. One should keep in mind 
that an  analogue of (2.4) is not known in higher dimensions even though a momentum 
integral can always be constructed. 

For our current purposes the dual symmetry will be used in a somewhat different 
capacity, namely as a generator of an  infinite set of conservation laws. The magnetisa- 
tion defined in terms of S', i.e. M '  = d x  S' = M ' ( A ) ,  is conserved for arbitrary A .  An 
expansion of M ' =  M ' ( A )  in powers of A yields a series in which the first term is the 
original magnetisation M = M ' ( A  = 0) and the coefficients in the higher-order terms 
produce new conserved quantities. To exhibit the first non-trivial conservation law we 
must 'solve' the linear system (2.3) to order A. The equation of motion S = J ,  implies 
the existence of a dual potential R = n(x,  t )  such that 

R, = s h=J R = I:, dx '  S(x',  t ) .  (2.5) 

Although an arbitrary constant matrix may be added to R, the choice made in (2.5) 
is natural in the sense that the dual potential is then a partially integrated magnetisation. 
In terms of R the Lax matrices are A = iAR, and  B = iA (h + 2AR,), and an  infinitesimal 
form of R is clearly given by R = I - t iAn.  Inserting this expression in (2 .4)  and 
integrating both sides we find that 

M ' =  d x S ' =  d x S + i A  dx[S, R]+O(A'). (2.6) 

As expected the first term is the usual magnetisation whereas the second term reveals 
a new non-local conserved quantity. Returning to vector notation we write 

1 5  I 
a a 
- ( S  x a)  = - [ ( J  x a) - 251. Q =  d x ( S x 0 )  1 a t  ax (2.7) 

The second equation in (2 .7)  can be verified directly from (2.1) and is quoted here as 
an independent check of the conservation of the non-local charge Q. Following the 
expansion to higher orders in A yields an  infinite series of non-local conservation laws 
which can be obtained also by forming Poisson brackets of the form {Q", O h } ,  
{{Q",  Oh} ,  Q ' } ,  and so on, by analogy with a similar construction in relativistic field 
theories [ 13- 151. 
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The significance of the non-local conservation laws for the current work is that 
they possess simple lattice analogues. A dual potential is defined from a,  -a,_,  = S,  
and h, = J,,, and the analogue of the charge Q of (2.7) is 

However the above charge is not conserved if the spin density S, satisfies the equation 
of motion of the original Heisenberg model given in ( 1 . 1 ) .  Thus we consider a simple 
generalisation of the Heisenberg equations of the form 

S,  = J,, - Jn-l Jn = yn(Sn xSn+l)  s', = 1 (2 .9)  

where the scalar factor yn will be determined from the requirement that the charge Q 
of (2.8) is conserved. A simple calculation based on (2.9) gives 

Q = C (Sn + Sn-1) X Jn = ~n [ 1 + (Sn * Sn+l ) l ( S n  - sn+ I ). (2.10) 

While the right-hand side is different from zero for the original Heisenberg chain 
(y,, = l ) ,  it vanishes when the scalar factor yn is chosen according to 

n n 

2 
(2.11) 

u p  to an  overall n-independent constant which may be identified with the exchange 
constant and  is hereafter scaled out. We thus find that Haldane's generalisation of 
the Heisenberg model given in (1 .2)  emerges from the requirement that the charge Q 
is conserved. It is also worth noting that implicit in the above calculation is the identity 

S,,+I- S,  + ;( Sn+l + S,, ) x J ,  = 0 (2.12) 

which is verified only if yn is given by (2.11) and is the discrete analogue of the 
pure-gauge condition (2 .2) ,  expressed here in vector notation. 

The results obtained so far already guarantee that the discrete model possesses an 
infinite number of non-local conservation laws generated by taking suitable Poisson 
brackets of the conserved charges Q", with a = 1 , 2 , 3 ,  defined in (2 .8) .  A more 
interesting result would be the derivation of a fully fledged Lax pair generalising (2 .3) .  
Indeed after some experimentation one finds that a Lax pair for the discrete model is 
given by 

Rn + 1 = An Rn 

A,, = cos A Z  + i  sin AS,,,, 

B, =is inA[cos  AJ,+sinAy,(S,+S,+,)]. 

R ,  = B,R, 

(2.13) 

Here we have returned to a matrix notation according to S, = Szm0 and J ,  =J:cro = 
( yn/2i)[S,, S, ,+ , ] .  A tedious but rewarding explicit calculation shows that the compati- 
bility condition A, +A,B,  - Bnt lAn  = 0 is verified for any eigenvalue A provided that 
the spin density S,, satisfies the equation of motion (2.9) with yn defined from (2 .11) .  
Since the matrices A ,  and B, in (2.13) are given in terms of fields in the neighbourhood 
of site n, it is not too difficult to formulate an  inverse problem for an explicit solution 
of the discrete system. 

The present section will be concluded with an attempt to generalise the non-linear 
Galilean transformation (2 .4)  to the discrete model. Of course, such a generalisation 



Complete integrability for a discrete Heisenberg chain 3641 

cannot be completely straightforward because the shift x -, x - vt does not seem to 
have an especially natural lattice analogue. However some progress can be made 
without performing such a shift. Given a solution S, = S,( t )  of (2.9) one may solve 
the linear system (2.13) for the SU(2) matrix R ,  = R , (  t ;  A )  and construct a transformed 
field SL = S;(t; A )  from SL = RLS,R, .  The latter can be shown to satisfy the equation 
of motion 

(2.14) 

where the scalar factor yk is defined from (2.11) with the substitution S, + S:,; in fact 
y:, = yn and yL-, = y n - , .  In the continuum limit we may set cos 2A - 1, sin 2A - 2A 
and CL - CL-, - 2 S : ,  so that the shift x-, x -4At would suffice to absorb the second 
term in (2.14) and thus recover the dual symmetry of the continuum model summarised 
in (2.4). A similar procedure for the discrete system is not known at this point. Perhaps 
the second term in (2.14) could be absorbed by a suitable redefinition of the crystal 
momentum. 

Nevertheless (2.14) is already a continuity equation implying the conservation of 
M ’ =  CSL = M ’ ( A )  whose expansion in powers of A yields an infinite series of non-local 
conservation laws. The first non-trivial term is obtained by solving the linear system 
(2.13) to order A.  We again find R, -- Z+iAR,, so the first non-local conservation law 
is given by (2.8). It should be noted that the constructed conserved charges are 
polynomials in the spin density. Therefore it is reasonable to expect that these charges 
are conserved in all integrable extensions of the quantum Heisenberg chain at finite 
spin s and, in a sense, characterise this class of integrable Hamiltonians. The implica- 
tions of non-local conservation laws for the structure of the scattering matrix were 
analysed previously in a relativistic context [ 141. That analysis should be simpler for 
the lattice systems considered here thanks to the absence of ultraviolet divergences. 

3. The direct scattering problem 

The main result of § 2 is the Lax pair of (2.13) which can be used to formulate an  
inverse problem for the explicit solution of the discrete chain. A discrete version of 
the inverse scattering formalism applied to non-linear systems was developed earlier 
for the Toda lattice [ 161 and  for a variety of lattice generalisations [ 171 of the original 
work of Zakharov and Shabat [ 181. Whereas these earlier studies proved very valuable 
in the course of the present work, we find it necessary to repeat the arguments in detail 
because of some special features of the spin chain which greatly simplify the solution 
of the inverse problem. This section summarises the relevant information from the 
direct scattering problem. The actual formulation of the inverse problem is relegated 
to § 4 and explicit solutions are worked out in § 5. 

First we collect some elementary properties of the spin matrix S, = S:go which 
follow from the constraint S’, = 1: 

s;=z s:, = s, det S ,  = -1. (3.1) 
It is often convenient to use the stereographic parametrisation 
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where Q n  is a complex variable in terms of which the spin matrix is 

and the spin components are given by 

The angles 8, and 4, are the spherical variables parametrising the unit vector S, .  
We will also employ a decomposition of the spin matrix according to 

S n  = Q n u 3  Qn (3.5) 

where u3 = diag( 1, -1) is the third Pauli matrix. An explicit calculation shows that 
the matrix Q, is given by 

and satisfies conditions identical to those satisfied by the original spin matrix in (3.1): 

Q i = Z  0: = Qn det Q,, = - 1. (3.7) 

The decomposition (3.5) will lead to transparent potential-independent Wronskian 
relations in the associated scattering problem. 

We begin the discussion of the scattering problem noting that the matrix A,, in 
(2.13) is a group element of SU(2) while the matrix B, belongs in the algebra of SIJ(2). 
Therefore the 2 x 2  matrix R ,  can be normalised so that it becomes a group element 
of SU(2). In particular R ,  is specified up to a right multiplication by an arbitrary 
constant matrix which can be chosen so that 

R:R, = I  det R, = 1 R,(h =0)  = I .  (3.8) 

For the moment we concentrate on the eigenvalue problem R , + I  = A,R,. The time 
evolution will be considered later in this section. As has been mentioned already a 
more transparent scattering problem can be formulated in terms of the matrix Qn of 
(3.6) rather than the original spin matrix S,. Thus the eigenvalue equation becomes 

(3.9) R,+l =(cos  A Z + i  sin hQ,,.Ia3Q,+,)R, 

and may be cast in the form 

G,+l = U,,iG, G n  E Qn+lRn 

(3.10) 

using the elementary properties of Qn summarised in (3.7). Without exception in the 
following symbol 5 will denote a complex variable on the unit circle. 

It is not difficult to see that the matrix U, can be written as 

(3.11) 
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where the potentials a, and 6, are expressed in terms of the spin variables by using 
the definition U, = Q n + 2 Q n + l  and (3.6). However, converting the potentials a,  and b, 
into the spin variables is not entirely straightforward and could complicate the solution 
of the inverse problem. Nevertheless this complication could be turned to advantage 
noting that 

G:G, = I det G, = -1 ( 3 . 1 2 ~ )  

and 

provided that the normalisation condition (3.8) is imposed. Therefore the spin variables 
are related directly to the wavefunctions of the scattering problem and the potentials 
a, and 6, can be sidestepped. The solution of the associated inverse problem will 
thus be simplified considerably. 

Now let U = U( n, 6) be a two-component spinor satisfying the eigenvalue equation 
(3.10) and let U(n,  5) be its conjugate spinor defined from 

The matrix G,,(6) may be constructed as 

GIl(5? = 
u A n ,  5) -UT(% 5) 

(3.13) 

(3.14) 

u p  to a right multiplication by a constant matrix which must be consistent with the 
assumed boundary conditions, in view of (3.12b), but will not be discussed further at 
this point. 

A more explicit form for the eigenvalue equation satisfied by the spinor U = U( n )  is 

(3.15) 

where the eigenvalue z is taken to be an  arbitrary complex number. Then the conjugate 
spinor U is a solution of (3.15) with eigenvalue l / z* .  If  z is restricted to the unit circle 
( z  = 6, l / z *  = 6)  both U and U solve (3.15) with the same eigenvalue 5. 

Consider next the Wronskian of two spinors U ’  and U which satisfy (3.15) with 
eigenvalues z‘ and z, respectively: 

W,(U’, U )  = u i ! n ) U , ( n ) - u ; ( n ) u , ( n ) .  (3.16j 

A simple calculation using (3.15) and the normalisation condition (3.1 1) establishes that 

(3.17) 

Applying this relation for U ’  = U and restricting it to the unit circle, so that z = 5 and 
z ‘ =  l / z *  = 5, we find that the norm of U( n, 5) is n independent. This norm can also 



3644 N Papanicolaou 

be shown to be time independent by virtue of the evolution equation in (2.13). Without 
loss of generality we adopt the normalisation 

lu,(n, 5)12+lu2(n, 5)1'= 1. (3.18) 

With this normalisation the matrix G,(5) of (3.14) satisfies both conditions in (3.120). 
In order to discuss some general properties of the associated Jost functions we 

assume the usual ferromagnetic boundary conditions 

lim S n = u  - lim Qn 
n - * x  - n - r x  

lim a,, = 1 lim b, = 0. 
n-rr n-*= 

(3.19) 

We will also assume that deviations from the ferromagnetic ground state are sufficiently 
localised so that certain analyticity properties invoked in the following are justified. 
It is more or less clear that localised soliton solutions, which are the main objective 
of this work, are consistent with such an  assumption. 

Jost functions 4 = 4 ( n ,  5) and CL = $(n, 5) are defined from their asymptotic 
behaviour 

4 - { 3 5" n + - x  

(3.20) 

and are both normalised on the unit circle according to (3.18). Together with $ = $( n, 5) 
we consider its conjugate spinor (L = (L( n, 5) forming a complete set of linearly indepen- 
dent wavefunctions. Expanding 4 in this set we write 

4(n, 5) = a ( S ) ( L ( n ,  5 ) ' P ( O * ( n ,  5). (3.21) 

In view of the normalisation (3.18) satisfied by both d and 4 the coefficients a and 
P can be expressed in terms of the wavefunctions as 

and their n independence is guaranteed by the Wronskian relation (3.17). 
For sufficiently localised potentials the Jost functions possess analytic continuations 

4 ( n ,  z )  and 4(n, z )  outside the unit circle. It is evident from the first equation in (3.22) 
that the continuation of the transmission coefficient a ( z )  is also analytic for IzI > 1. 
On the other hand we will assume that a ( z )  exhibits N simple zeros outside the unit 
circle: 

a(z , )=O lz,l > 1 i = 1 , 2  , . . . ,  N. (3.23) 

Applying relation (3.21) for z = z ,  we write 
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The scattering data consist of the locations of the simple zeros z ,  of the transmission 
coefficient, the reflection coefficient P ( ( ) / a ( t )  and the constants c, = p ( z , ) .  

The time evolution of the scattering data can be extracted from the second Lax 
equation in (2.13). An apparent complication is that the scattering problem is currently 
discussed in terms of the transformed eigenvalue equation (3 .10)  and the matrix Qn 
rather than the original spin matrix S,. However we only need to consider the evolution 
equation in the limits n + *cc in which both S, and Q,l reach the constant matrix L T ~ .  

Furthermore the asymptotic value of the scalar factor -yn in (2 .13)  is equal to unity. 
Putting everything together the time evolution of a wavefunction U at large distances 
is governed by 

(3 .25a)  

Also taking into consideration that suitable time-dependent phases must be removed 
in order to arrive at the Jost functions defined from (3 .20) ,  the time evolution of the 
scattering data may be inferred from (3 .22) .  We find that a = a ( z )  is time independent, 
p = P ( &  t )  is given by 

and c, = P(z,, t )  = c,( t )  gives 

c , ( t )  = c,(o) enp[ i (  z, - ; ) ? t ] .  

(3 .256)  

( 3 . 2 5 ~ )  

To complete the description of the direct scattering problem we discuss some further 
special features of the model under consideration. In  terms of the wavefunction 
x(*' = Z * " U  the eigenvalue equations (3.15) become 

x \ " ( n + l )  =z*a,x:"rn)+ b,x',+'(n) 

x;"(n + 1 )  = - z z b : X j f ' ( n )  + a f x Y ' ( n )  

or 

(3 .26a)  

(3 .266)  

and make it evident that the quantities z * " u ( n ,  z )  are even functions of z. Therefore 
the scattering coefficients given by (3 .22)  are also even and  the zeros of a ( z )  occur in 
pairs iz, with a = 1 , 2 ,  . . . , = M.  The weights c, = p ( z i )  corresponding to opposite 
eigenvalues are equal. 

The formal series 

(3 .27)  
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solve ( 3 . 2 6 ~ )  if the coefficients satisfy the infinite hierarchy of algebraic equations 

a,Co(n)+b,K,(n)=O 

-b: CO( n )  + a: KO( n )  = KO( n + 1) 

and so on. Finally (3.26b) implies that 

(3.28) 

( 3 . 2 9 ~ )  

where the amplitudes f ,  and fi are determined from the recursion relations 

We have thus summarised all the information needed for the formulation of an inverse 
scattering problem. 

4. The inverse scattering problem 

The essence of the inverse scattering formalism is to systematically exploit the analyticity 
properties described in the previous section. The starting point is relation (3.21) which 
we write as 

using the abbreviation p ( 5 )  = P(&)/a([) for the reflection coefficient. The time depen- 
dence will not be displayed explicitly but will be reinstated at the end of the calculation 
through (3.25). 

Multiplying both sides of (4.1) by 5--"/2rri(5-5), where 5 is an arbitrary complex 
number, and integrating about the unit circle yields 

The integrals in (4.2) will be expressed in terms of the scattering data using contour 
integration and the analyticity assumptions made in § 3. We will distinguish two cases 
corresponding to 1 and 151 < 1. For 151 > 1 the leht-hand side of (4.2) is written as 

The first integral on the right-hand side of (4.2) vanishes for 161 > 1. Therefore inserting 
(4.3) in (4.2) yields 
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The procedure is repeated for 151 < 1. Now 

and (4.2) gives 

151 1 

3647 

Note that the right-hand side of this relation is the same with that of (4.4). We may 
define a function F ( 5 )  which is equal to the left-hand side of (4.4) outside the unit 
circle and equal to the left-hand side of (4.6) inside the unit circle. Then 

(4.7) 

in analogy with the work of Zakharov and Shabat [18]. However an important 
difference arises here because the boundary value F, defined from (4.3) is generally 
a nontrivial function of n. This function could be related to the potentials a ,  and b, 
through (3.29) but such a procedure would not prove especially fruitful in the following. 

Some modifications of (4.7) are in order because of the special features of this 
model described in the concluding paragraphs of $ 3 .  The function z - " 4 (  n, z )  and the 
reflection coefficient p ( 5 )  are even functions of the eigenvalue, and the zeros z ,  occur 
in pairs fz, with (Y = 1 , 2 , .  . . , N / 2  = M. The weights = P(z,)/cr'(z,) corresponding 
to opposite zeros are also opposite because a ' ( z )  is an  odd function of z. To simplify 
the notation c, will denote the weight corresponding to the zero z ,  and -c, will be 
the weight corresponding to - z a .  The time evolution of the c, is again given by 

because ( 3 . 2 5 ~ )  is even under z ,  .+ -zl. Incorporating these refinements in (4.7) we write 

To summarise, (4.9) encompasses all the assumed analytic structure and provides 
the basis for the solution of the inverse problem. We shall restrict our attention to 
soliton solutions corresponding to a vanishing reflection coefficient. Setting p ( 5 )  = 0 
in (4.9) and subsequently applying it for values of 5 within the unit circle yields 

151 1 

a relation which is crucial for all calculations presented in the remainder of this paper. 
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Needless to say, this relation still contains the unknown amplitudes f l  and  fi. For the 
moment we will be content to express all other quantities of interest in terms of those 
amplitudes. 

Hence (4.10) is applied for I =  l / z z ,  with a = 1 , 2 , .  . . , M ,  to provide a linear system 
for the rLl(n, z,) and &(n, z,). For notational convenience we use the equivalent set 
of variables 

x, = z:$l(n, z,) Y, = z: $z( n, z, ) (4.11) 

which can be shown to satisfy the linear system 

c CmPXP = -x - f 1  c E, 

(z:zP)2 2c, 
r a p  = 1 - ( z*z  ) 2  ZF+l 

c c,,y, =f: -f2 c CY 
Y P Y 

(4.12) 
P 

c,, E 6,, +E r:YrYP. 
m P  v 

Relation (4.10) is also applied for 
unit circle, to yield 

i z l z  1 

= l / z* ,  where z is a complex number outside the 

2z"; xg 
z"lb,z( n, z )  =f: 4- 1 - z 2 z g 2  Z ; 2 n - l *  

(4.13) 

Having determined the X ,  and Y, from the linear system (4.12), (4.13) furnishes an 
expression for the wavefunction in terms of the scattering data and the unknown 
amplitudes fl  and fi. 

Some progress for the determination of f l  and fi can be made by expanding (4.13) 
in inverse powers of z and comparing the result with the series (3.27) derived directly 
from the eigenvalue problem. In particular the zeroth-order coefficient in the expansion 
of z"Gl(n, z )  must vanish in view of (3.27): 

(4.14) 

Since the Y, are linear functions of f l  and fl by virtue of (4.12), (4.14) determines 
the ratio fJfT in terms of the scattering data 

(4.15) 

where C-l is the inverse of the matrix C = (Cap)  given in  (4.12). 
Pushing the expansion of (4.13) to higher orders in l / z '  and comparing the result 

with the direct expansion (3.27) leads to a hierarchy of algebraic equations which are 
usually combined in the concise form of a Marchenko equation [17]. Nevertheless 
the soliton solutions of the present model can be constructed with the information 
contained in (4.15) together with some elementary arguments based on the relation of 
the original spin variables to the wavefunction (4.13) exhibited earlier in (3.12b) and 
(3.14). To avoid an unnecessary repetition of formalism the remaining steps are 
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explained in detail in the context of the one-soliton solution constructed in the following 
section. 

5. Solitons 

The one-soliton solution corresponds to a pair of zeros at *zl  . Therefore the sum in 
the basic relation (4.10) contains only one term and  subsequent algebraic manipulations 
become elementary. The ratio 

r = f J f  :: (5.1) 

is determined easily from (4.15) because the matrices rap and C,, reduce to a single 
element, i.e. 

(5.2) 

The ratio r is then given by 

1 YE- 
/ Z 1 l 4 -  1 '  

The linear system (4.12) is also solved trivially for the quantities XI and Y ,  to yield 

containing the amplitude f l  which remains unknown. 

some algebra using all the available information we find that 
The wavefunction is obtained from (4.13) restricted to the unit circle (z = 6). After 

where we use the abbreviations 

1 
S * ( ( )  = 

1 - &'IT' 

(5.5a) 

(5.56) 
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which simplifies algebraic manipulations involving the wavefunction ( 5 . 5 ~ ) .  For 
instance, the norm of the wavefunction is found to be 5 independent, namely 

Setting the right-hand side of (5.7) equal to unity, as is required for a Jost function 
on the unit circle, provides an explicit expression for the magnitude of  f l  in terms of 
the scattering data. Of course the magnitude offl is not in itself an especially interesting 
quantity. A more useful statement is that the norm (5.7) may be removed from the 
wavefunction (5.5) to obtain the manifestly normalised wavefunction 

where w, is the argument o f f , ,  the only unknown quantity at this point. 

G,(O of (3.14) in terms of the wavefunction (5.8): 
In order to make contact with the original spin variables we construct the matrix 

Since the wavefunction (5.8) is normalised the matrix G,,(()  obeys conditions ( 3 . 1 2 ~ )  
if C is an arbitrary constant element of SU(2).  The original spin variables are related 
to G,(O through (3.12b), i.e. 

(5.10) 

Recall that Q, + c3 at large distances. In particular the asymptotic form of Q, must 
be a diagonal matrix. On the other hand, we note that / $ l ( t i  - 1, 1)l-O and /i,hr(n - 
1, 1)1+ 1 for large n, so the matrix (5.10) will be asymptotically diagonal 
normalisation C is chosen as .=(e -;) 
up  to a trivial azimuthal rotation which is of no consequence in the following. 

if the 

(5.11) 

Hence 

(5.12) 

A simple inspection of the definition of Q, in (3.6) suggests further that the diagonal 
elements of (5.12) must be real, a condition that determines the remaining unknown 
phase w, in (5.8): 

w, = arg(A, +4ylc11'6*(1)) 

(5.13) 
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A comparison of (3.6) and (5.12) yields the steoreographic variable 0, 

2c, s ( 1 ) z y  -- I - - 
A , - l  +4ylci1’8*(1) 

where we used the definition of the argument w, given in (5.i3). 
Collecting the various constants entering (5.14) the one-soliton solution is 

1 1 SI = S(1) =- 
1-Zf Y=- k1l4- 1 

(5.14) 

(5.15) 

C ,  = c , ( t )  = c,(O) exp I z, -- I( :j2d 
The free parameters in (5.15) are the two complex numbers zi and c,(Oj. 

A physically transparent result is obtained by rewriting (5.15) in terms of the 
spherical variables 6, and C& related to the stereographic variable On by (3.4). Setting 

(5.16) z, = exp[+( e - i a ) ]  

our  final result is 

To 
cosh [e (n+ i ) -2s inh  E s ina t -x , ]  cosh[e(n- f ) -2s inh  e sin wt-x,,] 

1 -COS e, = 

ro = sinh’ e 
cosh E -COS U 

4, = do+ a n  +2(cos w cosh E - l ) t  

tanh( en - 2 sinh E sin at - x,) 
tanh( e /2 )  
tan( a / 2 )  

+tan-‘ (5.17) 

The real parameters xo and 4” determine the position and azimuthal orientation of 
the soliton and may eventually be traced to the real and imaginary parts of c,(O); the 
precise relationship being uninteresting at this point. The real parameters a and e 
account for the velocity and internal precession of the propagating soliton. 

It is clear that multisoliton solutions can be constructed with the same procedure 
incorporating more than one pair of zeros in the transmission coefficient. However 
the one-soliton solution (5.17) should prove sufficient to clarify some of the issues 
hinted at in the introduction of this work. Note that (5.17) is a pulse soliton which 
would lead on quantisation to a series of magnon bound states containing the elementary 
magnon as its first member. 

The soliton (5.17) is a natural lattice extension of  the well known result in the 
continuous chain [ 11,121 to which the present as well as the original Heisenberg chain 
reduces in the continuum limit. This explicit result corroborates our  earlier assertion 
that the natural lattice counterpart of the continuous chain is the generalised discrete 
chain of (1.2) rather than the original chain of (1.1). Putting it differently, solitons 
arising in the continuum approximation must be interpreted with caution. Therefore 
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some of the issues pertaining to the ongoing debate [ 7 , 8 ]  could be elucidated by an 
explicit semiclassical quantisation of the soliton (5.17). Such a calculation can be 
carried out with the method of [12] but the required computational burden exceeds 
the limits of the present paper. 
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Note added. One of the referees has pointed out that the complete integrability of the discrete spin model 
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References 

[ l ]  Haldane F D M 1982 J.  Phys. C: Solid State Phys. 15 L1309 
[2] Sutherland B 1975 Phys. Rev. B 12 3795 
[3] Takhtajan L A 1982 Phys. Lett. 87A 479 
[4] Babujian H M 1982 Phys. Lett. 90A 479 
[5] Nagaev E L 1982 Sou. Phys.- Usp. 25 3 1 
[6] Papanicolaou N 1986 Phys. Lett. 116A 89 
[7] Balakrishnan R and Bishop A R 1985 Phys. Rev. Lett. 55 537 
[8] Haldane F D M 1986 Phys. Rev. Let(. 57 1488 
[9] Pohlmeyer K 1976 Commun. Math. Phys. 46 207 

[ lo]  Neveu A and Papanicolaou N 1978 Commun. Math. Phyr. 58 31 
[ 111 Takhtajan L A 1977 Phys. Lett. 64A 235 
[12] Jevicki A and Papanicolaou N 1979 Ann. Phys., N Y  120 107 
[13] Liischer M and Pohlmeyer K 1978 Nucl. Phys. B 137 46 
[ 141 Liischer M 1978 Nucl. Phys. B 135 1 
[15] de Vega H J ,  Eichenherr H and Maillet J M 1983 Phys. Lett. 132B 337 
[16] Flaschka H 1974 b o g .  f i eor .  Phys. 51 703 
[17] Ablowitz M J and Ladik J F 1976 J.  Math. Phys. 17 1011 
[18] Zakharov V E and Shabat A B 1972 Sou. Phw-JETP 34 62 
[19] Faddeev L D 1982 Proc. Les Houches Summer School (Amsterdam: North-Holland) p 565 


